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LETTER TO THE EDITOR 

Space-periodically driven codimension-two bifurcations 

Christian Elphick 
Laboratoire de Physique ThCorique, Universite de Nice, Parc Valrose, 06034 Nice Cedex, 
France? 

Received 7 July 1986 

Abstract. An amplitude equation is derived for a one-dimensional extended dynamical 
system undergoing a codimension-two bifurcation subjected to a weak near-resonant 
spatially periodic forcing. It is proved that in some appropriate limit the dynamics is of 
the propagative phase type and it is governed by the time-dependent sine-Gordon equation 
with weak dissipation. 

During the last few years a problem of high current interest has been that of symmetry- 
breaking instabilities leading to pattern formation in non-equilibrium systems. Such 
instabilities in non-linear systems driven far from thermodynamic equilibrium are the 
analogue of equilibrium phase transitions in condensed matter physics with the 
difference that in these systems the invariance under time translations may also be 
spontaneously broken, leading to states varying periodically in time. 

In many non-equilibrium systems an instability often consists of a transition from 
an unstructured uniform state to one varying periodically in time or space; in other 
words, the first instability that occurs can be either stationary or oscillatory. The 
appearance of periodic structures in these systems driven externally by a set of 
time-independent control parameters corresponds to a bifurcation, characterised by 
the undamping of one or several normal modes as the control parameters are varied, 
and the breaking of a symmetry. When the number of these critical modes is finite, 
their amplitudes are governed in the vicinity of the bifurcation by non-linear partial 
differential equations (amplitude equations) in which the growth rates of the linear 
theory have been renormalised by non-linear terms and describe slow modulations in 
time and space of the periodic structure envelope. 

Once the instability has given rise to a spatially periodic pattern in a system with 
translational invariance, one is naturally led to ask what is the mechanism responsible 
for the selection of a particular pattern wavevector from the band of possible wavevec- 
tors. A partial answer to this question can be given if the translational symmetry of 
the system is broken externally by a spatially periodic forcing and by examining the 
response of the system to forcing at a wavevector that may be different from the 
naturally selected one. This has been the approach followed by Lowe et a1 (1983) and 
Lowe and Gollub (1985) whose experimental results in a convecting nematic fluid 
subjected to a spatially periodic potential difference led to the discovery of soliton 
lattices in connection with the selection of patterns resulting from an electrohydro- 
dynamic instability and yielded a surprisingly rich variety of modulated structures, 
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including one-dimensional commensurate phase-locked patterns, incommensurate 
states characterised by soliton-like phase disturbances and two-dimensional structures 
like crystal lattices. 

From the theoretical point of view the effect of a spatially periodic forcing has 
already been studied by Kelley and Pal (1978) in the context of thermal convection 
at the onset of a stationary instability, but only commensurate states were considered, 
and recently by Coullet (1986) who derived an amplitude equation for the slowly 
varying envelope of a one-dimensional periodic pattern under the presence of a weak 
periodic forcing. He showed that the competition between periodicities can lead to a 
commensurate-incommensurate ( C I )  transition mediated by time-independent phase 
solitons arising from a ‘diffusive’ sine-Gordon equation in agreement with the experi- 
ments of Lowe and co-workers. As has already been pointed out by Coullet (1986), 
if one considers a propagative phase dynamics instead of a diffusive one the U I  transition 
can be mediated by dynamical sine-Gordon solitons whose eventual non-linear evol- 
ution may lead to soliton turbulence. 

The aim of this letter is to consider one-dimensional extended dynamical systems 
subjected to a weak spatially periodic forcing, leading naturally to a propagative phase 
dynamics which in some appropriate limit reduces to the time-dependent sine-Gordon 
equation. 

The natural framework for studying the above situation is provided by the study 
of an amplitude equation derived in the neighbourhood of a point in parameter space 
where a codimension-two bifurcation occurs arising from the intersection of a 
codimension-one line associated with a stationary instability (simple zero eigenvalue) 
and a codimension-one line associated with an oscillatoiy instability (Hopf bifurcation). 

Following the above reasoning, let us consider a one-dimensional extended dynami- 
cal system undergoing a codimension-two bifurcation at a wavenumber k = k,. Let 
U ( x ,  t )  be a set of real scalar fields describing the physical system and modelling its 
pattern-forming transitions. We assume that the U obey an evolution equation of the 
form 

MU, = LU+ N (  U )  

where L and N represent linear and non-linear differential operators, respectively, 
depending on a set of parameters pi ,  i = 1,2 ,  . . . , and M is an invertible linear operator. 
For instance, the equations of bi-dimensional convection with free-free boundaries 
are easily cast into the form (1) where U represents the stream function and the 
temperature and parameters are the Rayleigh and Prandtl numbers. 

In the absence of a spatially periodic forcing the system considered is assumed to 
be invariant under spacetime translations and space reflections. The critical situation 
considered occurs when two parameters, say p,  and p 2 ,  take critical values K,~, p2= 
such that the operator L in Fourier space has a doubly degenerate zero eigenvalue at 
(kl = k, with an associated Jordan matrix 

whilst the rest of its eigenvalues remain with a strictly negative real part for all k. By 
using the fact that the spatial symmetries of the problem can be identified with the 
SO(2) x Z,  = O(2) symmetry, the critical eigenvalues become doubled and there the 
critical subspace becomes four dimensional. Let us denote by = 4, exp(*ik,x) 
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and 9b2* = 42 exp(*ik,x) the critical modes. Then the restriction of L to the subspace 
spanned by $,*} is the double Jordan matrix JOJ such that L$,, = 0, L&, = G I + .  

In the asymptotic regime of long times the non-linear dynamics reduces to the 
centre manifold which is locally tangent to the critical subspace. Therefore we look 
for U in the form 

U = A ( x ,  t)$l,+B(x, t)(lr2++cc+ U (3) 
where U represents the centre-manifold contribution consisting of linear and non-linear 
corrections which are assumed to be small for lpl-p,,l<< 1, Ip2-p2,1<< 1, and A and 
B represent two slowly varying complex fields necessary to describe the onset of the 
instability. The fields A and B obey an amplitude equation which can be derived by 
standard methods (Coullet and Spiegel 1983): 

The differential linear operator 2' is nothing other than the operator version of the 
Arnold-Jordon matrix corresponding to the critical matrix J. Using the symmetry 
x + -x 2' becomes 

where p and v are small parameters which measure the deviation from threshold. The 
non-linear terms in (4) are determined by using the fact (Elphick et a1 1986) that N I  
and N2 are equivariant under the Lie group generated by SOJ modulo non-resonant 
terms (terms that can be eliminated by a smooth non-linear change of variables). Using 
the last fact with a judicious choice of non-resonant terms, together with the SO(2) 
symmetry, we readily obtain 

N I  = O  

N2 = AQ( IAI2) + BPI(  IAI2, AB - AB) + BA2P2( IAI', AB - A B )  ( 6 )  

where Q, P, and P2 are polynomials in their arguments. 
When one takes into account the effect of a weak spatially periodic forcing with a 

wavenumber k, , the translational invariance becomes the discrete invariance x + 

x + N27r/ k,. In the case of resonant forcing k,  = ( n /  m) k, the discrete translational 
invariance implies the invariance of the amplitude equations under the transformations 
A +  A exp(i27r/n), B+ B exp(i27rln) which in turn implies that N2 contains a SO(2) 
symmetry-breaking term which at leading order becomes 

C I A " - ' +  (7) 
where c1 ,  and c2 are constants which generally scale as the mth power of the forcing 

amplitude. When one considers the misfit q between the external and natural peri- 
odicities (k, = ( n /  m)(  kc+ q ) ,  q << k,) (7) is modified by the replacements c1 + 
c1 exp(inqx), c z +  c2 exp(inqx). 

Using the above results, the equations for the fields A and B at the leading order 
( n  s 4) are 

A,  = B 

B, = P A +  ~ B + A , , + B , , + u ~ A ~ ~ A +  bBA2+cBIAIZ 

+dB(AB - A B )  + (c,A"-'+ C ~ B A " - ~ )  exp(inqx) 
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which represent universal amplitude equations describing the onset of a codimension- 
two bifurcation in an extended one-dimensional system when it is subjected to a weak 
near-resonant spatially periodic forcing. Equation (8) can be further simplified by 
considering its asymptotic form (Ameodo er al 1985) which amounts to scale A +  &OLIA, 
B +  EO~B, t +  . 5 0 L 3 t ,  x +  &OL4x, p + E ~ S ~ ,  v +  eP6u and retain the leading-order contribu- 
tions in powers of E. One readily obtains, after the transformation A + A exp(iqx), the 
following asymptotic equation for A: 

A,, - uA, = ( p  -q2)A+2iqA,+A,+alA12A+c,A"-1 (9) 

which is nothing other than the propagative-dissipative version of the equation derived 
by Coullet (1986) to describe the effect of a weak forcing at the onset of a codimension- 
one stationary bifurcation. In the limit of large dissipation we recover Coullet's 
equation. It is worth remarking that, although the translational invariance has been 
broken externally, equation (9) still possesses this invariance since A is assumed to 
vary on a scale much larger than max(2.rr/kC, 2.rr/ke). 

To conclude, let us take p > 0, U < 0 and set for convenience a = -1. Then in the 
limit p large, v small (more precisely p >> q2,  c : ' ~ - " ,  ] V I < <  &) we expect that the 
dynamics of A will be mainly dominated by its phase. Making the ansatz A = R exp(i0) 
we extract from (9) the following phase equation: 

e,, - ye, = e,, - ~ , p ( " - ~ ) / ~  sin(n0). (10) 

Therefore we have shown that the dynamics in the vicinity of a codimension-two 
bifurcation under the presence of a weak near-resonant forcing is gpvemed by a 
propagative-dissipative amplitude equation with O(2) symmetry-breaking terms 
(equation (8)) which, when put into its asymptotic form, leads in some appropriate 
limit to a propagative phase dynamics described by the time-dependent sine-Gordon 
equation with a small damping term, measuring weak dissipation. 

The author would like to thank P Coullet for fruitful discussions. 

References 

Ameodo A, Coullet P, Spiegel E A and Tresser C 1985 Physica 14D 327-47 
Coullet P 1986 Phys. Rev. Lett. 56 724-7 
Coullet P and Spiegel E A 1983 SIAM J. Appl. Math. 43 776-821 
Elphick C, Tirapegui E, Brachet M E, Coullet P and Iooss G 1986 A Simple Global Characterisation for 

Kelley R E and Pal D 1978 J. Fluid Mech. 86 433-56 
Lowe M and Gollub J P 1985 Phys. Rev. A 31 3893-7 
Lowe M, Gollub J P and Lubensky T C 1983 Phys. Rev. Lett. 51 786-9 

Normal Forms of Singular Vector Fields. Preprint Universitd de Nice 


